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It is shown that the stable and unstable manifolds of dynamical systems theory

provide a powerful tool for understanding Lagrangian aspects of time-periodic vor-

tex ring flows. The first case is that of a vortex ring with an elliptical core. The

manifolds provide information about entrainment and detrainment of irrotational

fluid into and out of the volume transported with the ring. The likeness of the

manifolds with features observed in flow visualization experiments of turbulent vor-

tex rings suggests that a similar process might be at play. However, what precise

modes of unsteadiness are responsible for stirring in a turbulent vortex ring is left

as an open question. The second situation is that of two leapfrogging rings. The

unstable manifold shows striking agreement with even the fine features of smoke

visualization photographs suggesting fluid elements in the vicinity of the manifold

are drawn out along it and begin to reveal its structure. We argue that interpreta-

tions of these photographs which argue for complex vorticity dynamics ought to be

reconsidered. Recently, theoretical and computational tools have been developed to
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locate structures analogous to stable and unstable manifolds in aperiodic, or finite-

time systems1–7. The usefulness of these analogs is demonstrated, using vortex ring

flows as an example, in the companion paper by Shadden, Dabiri and Marsden8.

I. INTRODUCTION

In the 1980s considerable effort, under the rubric of ‘chaotic advection’ or ‘Lagrangian tur-

bulence’, was devoted to applying dynamical systems theory concepts, such as the Poincaré

section and Lyapunov exponent, to study the transport of fluid elements in time-periodic

flows. Aref9 demonstrated some ideas through a toy model of stirring in a cylindrical enclo-

sure consisting of two vortices which are alternately turned on and off. This was followed

by numerical10 and and experimental11,12 studies in Stokes flows, for instance the flow in the

space between two non-concentric cylinders. The first to consider an open flow were Rom-

Kedar et al.13 who introduced the oscillating vortex pair model in which the positions of a

counter-rotating pair of point vortices are subject to oscillatory forcing. They showed that

the stable and unstable manifolds of the fixed points of the Poincaré map play an important

role. In particular, they provide a template for the flow, and lobes formed by intersections

of the two manifolds can be used to quantify rates of entrainment and detrainment into the

volume of fluid transported with the vortex pair.

The present work, which was also performed in 1980s, follows upon the heels of Rom-

Kedar et al. and computes manifolds for time-periodic vortex ring flows. We take up the

suggestion that instead of externally imposing the period and amplitude of the unsteadiness,

“Future studies might focus on the dynamics of flows specified by an internal parameter...in

which changes in the parameter result in changes in flow kinematics and thus the mixing.”14

To this end, we consider solutions of the Euler equations which are inherently unsteady

with period and amplitude determined internally. Two cases are considered. The first
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is that of a vortex ring having a core of (practically) uniform vorticity and elliptic cross-

section, the solution for which was obtained by Moore15. The core rotates at the constant

angular velocity of Kirchhoff’s elliptical vortex (Lamb16, §159) and its speed of translation

oscillates about the value given by Kelvin (Lamb16, §162). This is the simplest mode of

unsteadiness which can exist on a vortex ring. The rate of entrainment and detrainment of

irrotational fluid into and out of the volume of fluid transported with the ring is presented as

a function of ellipticity and core size. Qualitative comparison of the unstable manifold with

flow visualization observations of turbulent vortex rings suggests that unsteadiness of the

vortex core induces motions in the “atmosphere” of the ring which should not be interpreted

as vortical. The ring of elliptic cross-section may also be useful in understanding aspects

of fluid engulfment in the initial stages of pairing when two neighboring rings co-rotate and

after the merging when an elongated core is formed.

The second case presented is that of two leapfrogging rings. In those experiments where

tracer is injected directly into the shear layer at the lip, there is little ambiguity between

vorticity and tracer, aside from Schmidt number effects. Indeed, for such cases, core shapes

obtained with contour dynamics calculations17 correspond well with flow visualization exper-

iments. But, what happens if tracer is injected not only into the shear layer emitted from the

orifice but also into the non-vortical fluid outside the cores? The vorticity may induce tracer

particle motions in the irrotational region which can be confused as being associated with

the vorticity. We will show this to be case in the experiment by Yamada and Matsui18. It

will be suggested that the descriptions which have been applied to their photographs ought

to be reconsidered.

From a broader perspective, the term entrainment originates from work on laminar and

turbulent shear flows, a jet for instance, and refers to increasing mass flow along the main

(horizontal, say) direction of flow. In the laminar case, momentum diffuses vertically which
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leads to increasing horizontal mass flow; continuity then requires that this be fed by vertical

flow into the layer. Turbulent entrainment, on the other hand, involves three steps19: (i)

engulfment of irrotational fluid by the Biot-Savart induced velocity, (ii) vorticity mixing, i.e.,

viscous diffusion of vorticity into the engulfed fluid, and (iii) rejection of vorticity-mixed fluid

into the previously irrotational part of the flow. Even in the absence of viscous diffusion (step

ii), these processes imply growth of the vorticity containing region. The net result observed

is the same as in the laminar case, namely, streamwise increase of mass flux, although this

is not apparent using the vorticity argument. The present work is restricted to entrainment

and detrainment, in equal amounts, of irrotational fluid. Because the flows considered are

time-periodic our work cannot say anything about permanent entrainment, however, it is

hoped that recent generalizations of the manifolds to non-periodic flows 1–7 will do so in the

near future.

The next section (§II) defines the stable and unstable manifolds for time-periodic flows.

Results are presented in §III, and conclusions in §IV.

II. BACKGROUND

This section aims to define the stable and unstable manifolds of dynamical systems

theory. For a more detailed introduction the reader is refered to the text by Guckenheimer

and Holmes20. Consider the equations governing the motion of particles in a two-dimensional

unsteady flow (the extension to three dimensions is straighforward):

ẋ = u(x, y, t), ẏ = v(x, y, t), (1)

with initial condition

(x(0), y(0)) = (x0, y0). (2)
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For axisymmetric flow x and y denote the axial and radial coordinates; u and v being the

corresponding velocities. In this case, the definition of the Stokes streamfunction ψ:

ẋ =
1

y

∂ψ

∂y
, ẏ = −

1

y

∂ψ

∂x
, (3)

together with the transformation η = y2/2 can be used to write (1) in Hamiltonian form:

ẋ =
∂ψ

∂η
, η̇ = −

∂ψ

∂x
. (4)

This fact opens up the use of various techniques developed for dynamical systems with a

time dependent Hamiltonian20. The solution to (1), called a pathline, is a curve in (x, y)

space (the phase space) parametrized by time. The curves for different (x0, y0) may intersect

(albeit only at different t) and this impairs geometric thinking. To overcome this difficulty,

time is introduced as an extra direction in the phase space. For this purpose (1) is written

as an autonomous system (with right hand side not explicitly dependent on time) at the

expense of increasing the dimension of the phase space by one:

ẋ = u(x, y, φ̃), ẏ = v(x, y, φ̃),
˙̃
φ = 1. (5)

The solution is represented by curves in (x, y, φ̃) space which do not intersect. If the velocity

field is time-periodic with period 2π say, then to guarantee that trajectories do not intersect,

it is sufficient to take φ = φ̃ mod 2π to be the extra dimension in phase space, To see this

assume that two different trajectories coincide at x1, y1, φ1 ∈ [0, 2π]. Then if the velocity

field is time-periodic the two trajectories will continue to coincide for both time running

forward and backward.

Discrete maps are an important class of dynamical systems. They may be studied in their

own right or they may arise from a continuous dynamical system. For example, the cases

to be presented have periodic unsteadiness and we shall be concerned with how particles

are mapped in successive periods. After integrating (5) either numerically or exactly, from
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phase φ0 at period i to the same phase at period i+ 1 we obtain

xi+1 = g(xi), x ∈ R2. (6)

Such a map is called a Poincaré map and φ0 will be called the base phase of the map.

Let us now consider a continuous autonomous system and map in n cartesian dimensions:

ẋ = f(x), x ∈ Rn, (7)

xi+1 = g(xi), x ∈ Rn. (8)

The fixed points x of (7) and (8) are defined respectively by

f(x) = 0; (9)

g(x) − x = 0. (10)

The systems linearized about the fixed points are

ξ̇ = Aξ; (11)

ξi+1 = Bξi, (12)

where A and B are constant n× n matrices with elements

ajk =
∂fj

∂xk

∣∣∣
x=x

, (13)

bjk =
∂gj

∂xk

∣∣∣
x=x

. (14)

(15)

The linearized systems lead to the notion of eigenspaces. For the continuous system divide

the generalized eigenvectors37 of A into three groups, having eigenvalues with real parts

positive, negative and zero, respectively. Each group spans a subset of Rn, referred to as

the stable, unstable and center eigenspaces, denoted as Es, Eu and Ec, respectively. For

maps, these eigenspaces are constructed from the generalized eigenvectors of B associated
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with eigenvalues having modulus > 1, < 1 and = 1, respectively. A fixed point having no

eigenvalue with zero real part in the case of a continuous system or having no eigenvalue

with unit modulus in the case of a map is called hyperbolic. Hyperbolic fixed points are

nice because not only is the existence of the stable and unstable manifolds guaranteed but

the Hartman-Grobman theorem (ref. 20, p. 13) says that near a hyperbolic fixed point the

solution of the linearized and full system are qualitatively similar. In particular, they can

be deformed to each other in a continuous, invertible and one-to-one fashion. An important

case of non-hyperbolic fixed points is the surface of a rigid no-slip surface. The conditions

for manifold emanation in this case must be obtained separately21.

An important property of the eigenspaces is that each is an invariant subspace for the

linearized system; that is to say a solution on each set remains there always for −∞ < t <∞

for the time continuous systems and −∞ < i <∞ for maps. This is so because the general

solution of (7) and (8) is a linear combination of the generalized eigenvectors.

For hyperbolic fixed points the stable and unstable manifolds of x, denoted as W s(x)

and W u(x), respectively, are simply non-linear extensions of the eigenspaces. One begins by

defining the manifolds locally in some region U (not necessarily small) containing x. W s
loc(x)

is the set of all solutions in U which tend to x as t → ∞ and never leave U for t ≥ 0.

Similarly W u
loc(x) is the set of all orbits in U which tend to x as t → −∞ and never leave

U for t ≤ 0. This definition is general and does not refer to the eigenspaces but the stable

manifold theorem for continuous systems as well as maps asserts that for a hyperbolic fixed

point W s
loc(x) and W u

loc(x) exist, are tangent to Es(x) and Eu(x) at x, and have the same

dimensions ns and nu. In either case, the global W u(x) is then defined constructively by

letting the local unstable manifold flow forward under the dynamical system. Similarly,

the global stable manifold is constructed by letting the corresponding local manifold flow

backward in time. By construction, the manifolds are invariant subspaces; they always
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FIG. 1: Sketch of streamlines for steadily translating vortex rings. The hatched region shows the

vorticity containing region. (a) is for very thin cores and (b) for thick cores.

contain the same fluid particles.

To illustrate these definitions consider a vortex ring in a reference frame traveling with

the ring (Figure 1). The dividing streamline is both the unstable manifold of F (excluding

the point R) and the stable manifold of R (excluding the point F ). Connections such RF

and the dividing streamline which join two saddles are called heteroclinic orbits and together

they form a heteroclinic cycle. In the present case the unstable and stable manifolds of the

forward and rear stagnation points coincide. This situation is highly exceptional; if the ring

were slightly disturbed, the body of fluid carried with it would leak. In the time-periodic

case, this will manifest itself as a splitting of the manifolds of the Poincaré map. In the early

seventies several papers motivated their study of vortex rings by suggesting that vortex rings

could be used to transport chimney wastes to high altitudes. We should be thankful that

the scheme was never implemented.
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III. RESULTS

The first example is that of a single unsteady vortex ring. We consider the solution due

to Moore15 in which the core is an ellipse with semi-major and semi-minor axes a and b.

The radial centroid of the ellipse at the phase when it is aligned with the symmetry axis

is denoted L0. Moore’s solution is valid in the limit of small a/L0; the dynamics are then

locally two-dimensional and the core rotates at the constant angular velocity of Kirchhoff’s

elliptic vortex (Lamb16, §159). This core motion causes the translational velocity to oscillate

(about an average) once every half-rotation of the major axis. The radial centroid oscillates

similarly. In ref. 17 deviations from Moore’s solution were investigated for thick cores and

it was found that strain due to curvature caused the aspect ratio of the ellipse to pulsate as

well as to decrease secularly. Thus, for fat cores the results of this paper apply for only a

few periods.

In order to track particles, one needs the velocity field. However, in Moore’s study it

was necessary to know only the zeroth order streamfunction in the vicinity of the core and

the corresponding velocities have O (1) errors. In the present calculations we obtain the

velocities everywhere numerically from the contour dynamics equations17. Thus there is the

slight inconsistency that the core dynamics follows an asymptotic result whereas the velocity

field is unapproximated.

The Poincaré map is defined using the period of the velocity field which is half the period

of rotation of the major axis and the base phase is taken to be when the major axis is parallel

to the symmetry axis. The unstable manifold is computed by first obtaining, using secant

iterations, the location xF of the forward hyperbolic fixed of the Poincaré map lying on the

symmetry axis. Next, a particle lying at (xF , ε), i.e., a small distance radially away from

the fixed point, is mapped forward one period. This defines two end-points of a segment.



9

FIG. 2: Unstable manifold of the forward periodic point for an elliptical core ring. λ = 2, α ≡

(a + b)/(2L0) = 0.15

.

Many points are placed on the segment and iterated forward to build the manifold. The fact

that the initial segment does not lie exactly on the manifold poses no practical problems.

Since neighboring points converge to the manifold from both sides, initial errors are quickly

diminished. This was checked by deliberately introducing large errors into the initial angle

of the segment and comparing with the shape of the manifold without the errors. The stable

manifold of the rear fixed point is obtained by symmetry. If time were reversed, the vortex

would rotate in a clockwise direction and R would be the front hyperbolic point and a similar

procedure would yield its unstable manifold symmetric to the first one. With time restored

to its original course this becomes the stable manifold of R.

Figure 2 shows the unstable manifold for α ≡ (a + b)/(2L0) = 0.15 and an aspect ratio

λ ≡ a/b = 2. Figure 3 shows a limited portion of both manifolds. The unstable manifold

of F begins as non-oscillatory but meanders about the stable manifold of R in the rear of

the ring. The stable manifold of R begins as oscillatory in the front of the ring and becomes

non-oscillatory in the rear. The square symbols mark some intersection points. Because the

manifolds intersect the Smale-Birkhoff test implies that horseshoe type of chaos is present20.

A particle started on one manifold ends up somewhere else on the same manifold after
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FIG. 3: Abridged portions of the stable and unstable manifolds corresponding to the previous figure

illustrating fluid engulfment and rejection.

one period. Hence intersection points get mapped to intersection points. It was checked that

the square symbol nearest F is mapped to the third, the second to the fourth, etc. Therefore

the lobe denoted as A0 is mapped to A1 and so on. All the lobes must have the same volume

and this was verified. After the sixth period, fluid in A0 is engulfed into the oval shaped

region O consisting of the non-oscillating halves of the two manifolds. For convenience we

shall refer to a lobe such as A6 as the entrance lobe. Similarly B0 is “detrained” after the

fifth period. A lobe such as B5 shall be referred to as the exit lobe. Thus in every period the

region O picks up fresh fluid in exchange for old fluid over a limited portion of its boundary.

Figure 4 plots the volume exchanged during the time that the vortex travels one diameter

as a function of the ellipticity εe ≡ (a− b)/(a+ b). The largest value of εe shown corresponds

to an aspect ratio of two. The solid circles are for a core size to radius ratio α = 0.15 and the
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FIG. 4: Volume of fluid exchanged by elliptical core vortex rings per diameter translation as a

function of the ellipticity. •, α ≡ (a + b)/(2L0) = 0.15; �, α = 0.125.

solid squares are for α = 0.125. According to the linearized theory due to Melnikov20 valid

for small perturbations about the steady state, the amplitude of the manifold oscillations is

linear in the perturbation amplitude εe. In the present cases, the linear behavior persists up

to quite large values of the ellipticity. Note that the time that it takes to travel one diameter

is independent of εe hence the ordinate scaling does not affect the linearity. Also note the

sensitivity of the slope to α: a slightly thicker core processes fluid much more rapidly.

More intersections of the two manifolds give information about smaller volumes of fluid.

Figure 5 sketches representative manifolds with as many lobes shown as the fineness of a

pen would allow. The sketches assume a particular topology: the entrance lobe intersects its

symmetric image after nint = 3 periods. In reality nint is larger than this, O (10) in Figure 2

for instance. Suppose we wish to know how long particles remain with the vortex after they

are engulfed. By observing successive maps of the entrance lobe one sees that they flow

counter-clockwise around the vortex and every map after the third has a piece contained in
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FIG. 5: Motion of subsets of the entrance lobe.

.

the exit lobe which has been rejected. Consider the the shaded sub-regions of the entrance

lobe. Those regions, like the stippled and screen-dotted, that happen to be contained in

a single lobe of the stable manifold have relatively simple histories. The stippled region is

mapped out of O after 4 periods, the screen-dotted after 5. Following their motion backward

in time one observes that their shapes are symmetric. Note however that their orientation

changes. The solid region is not inside one lobe of the stable manifold but rather very many

which are not drawn. It has a more complicated history. Following its motion forward, it

intersects a stable manifold lobe that is drawn after four iterations. We identify its middle

piece as the first to be rejected in six more iterations. Following it further in time as it

intersects more of the drawn stable manifold lobes one is able to identify more portions to

be detrained in later iterations. Note how the solid region is drawn out along the unstable

manifold and begins to reveal its shape.

Figure 6a-b gives an example of how the horseshoe arises. It depicts iterations (hatched) of

a roughly rectangular region (screen-dotted) whose boundaries lie in the stable and unstable
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FIG. 6: Sketch of six Poincaré maps of a “rectangle” (screen dotted) leading to a the horseshoe

map. The iterates are hatched and proceed counterclockwise. (a) shows the first five iterations and

(b) the last.

manifolds. Note how the region is bent and after the sixth iteration (Figure 6b) intersects

itself in two strips. In six more iterations, this fluid will intersect the original rectangle in

four finer strips contained in the original two and so on. Rectangles which have this property

are said to form a Markov partition for the Poincaré map. Note again how the rectangle is

drawn out along the unstable manifold and more iterations would reveal its finer structure.
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FIG. 7: Schlieren visualization of a shock-tube generated ring propagating to the left. Courtesy of

B. Sturtevant.

A. Implications for Interpreting Flow Visualizations of Turbulent Rings

Figure 7 is a spark-Schlieren photograph kindly provided to us by Prof. Sturtevant (same

as Figure 11d in ref. 22). It shows a shock-tube generated ring propagating to the left. In a
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Schlieren image the difference in illumination at a given point from the overall illumination

is proportional to the density gradient, normal to a knife edge, integrated over the entire

length of the test section normal to the photograph. Unfortunately, the direction of the knife

edge is not provided. The walls of the tube were cooled to aid in visualization. The vortical

core consists of cooled shear layer fluid as well as warm ambient fluid sandwiched between

turns of the spiral. As temperature mixes at roughly the same rate as vorticity, the vortex

subcore23 acquires a smooth temperature distribution. The visualization is also aided by the

reduced density in the vortical core from compressibility effects. In any case, the vortical

core is the dark region and outer undiffused turns of the spiral also appear to be visible.

We are interested in the streaky pattern in the rear which is described in a later report24.

His description applies to oblique views of the ring that are of insufficient resolution to

allow reproduction here, however, they refer to a realization in which the same generation

parameters and visualization technique were used as for the photograph we have presented.

We think it is not inappropriate to quote that description in its entirety. It should be noted

that he uses “ring” to refer to the entire volume of fluid, vortical and non-vortical (or weakly

vortical) carried with the ring.

“In the second photograph (x/D = 3.1) [the photograph we have been able to provide

is slightly earlier at x/D = 2.78] the circumferential lines on the external interface have

distorted and have developed a three-dimensional irregularity. The ring now trails a thin

wake.”

“At x/D = 4.5 the flow inside the ring seems to be fully turbulent. Disturbances on

the boundary of the ring protrude into the surrounding fluid and, after being convected

along the boundary to the rear of the ring, seem to grow almost explosively outward from

the rearward surface of the ring. Apparently, this is a mechanism for ejection of fluid into

the wake of the vortex ring, because in this photograph, and in subsequent ones, the wake
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thickens very rapidly. The rapid growth of disturbances on the interface at the rear of the

vortex ring appears to be the mechanism not only for ejecting ring fluid into the wake but

also for entraining external fluid into the ring, because, after x/D = 6.0 mixing within the

ring becomes so strong that the photographs rapidly lose their contrast. By x/D = 6.0 the

spatial distribution of the inhomogeneities within the ring seems to have become relatively

homogeneous and isotropic. It is noteworthy that this state of fully developed turbulence is

reached just before the instability waves on the core of the ring reach substantial amplitude.

Though the relationship between the core instability and the turbulence in the ring is not at

all clear, it is certainly apparent from these photographs that substantial three-dimensional

random, unsteady motion (turbulence) occurs within the ring before there are any signs of

the fundamental core instability” (Sturtevant’s italics).

It should be noted that Figure 12 in ref. 22 is a photograph of the same case without

pre-cooling. Only the naturally occurring reduced density in the vortex core is used for

visualization. No streaks are present.

Surtevant’s description of the interface is consistent with the picture of entrainment and

detrainment provided by the unstable manifolds. Wherever turbulence is mentioned, it does

not refer to vortical motions but rather chaotic motion of the cold fluid carried with the ring

and entrained ambient warm fluid. The distortions of the interface are described as three-

dimensional suggesting that the unsteady vortical motion causing it is also three-dimensional.

This seems inconsistent with the fact that it is observed before the core (Widnall25) insta-

bility. Several possibilities may account for this. There may be another three-dimensional

mode on the core that is inducing these motions. A second possibility is that since Schlieren

visualization presents an integrated view of density gradient, complex axisymmetric stirring

of cold and ambient fluid is being mistaken for three-dimensional motion. Even when it does

appear, the Widnall instability is an efficient stirrer because the instability wave is stagnant
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in the linear phase according to both experiment26 and theory25. Even when the waves be-

gin to rotate26 in the non-linear phase, short waves have a short range effect on the velocity

field. This is suggested by Widnall, Bliss & Tsai25 who say that “for short waves, such as

are observed on vortex rings, the velocities induced at the core boundary owing to distant

perturbations on the ring are negligible; preliminary calculations of the outer potential flow

using toroidal co-ordinates indicate that these are of order 1/(NwR)2 as NwR → ∞.” Here

Nw is the number of waves and R is the radius of the ring.

What form of unsteadiness produces the stirring in the experiments is still an open

question. One possibility is residual unsteadiness from the formation of the ring. Another

possibility is the instability of two-dimensional compressible vortices studied by Broadbent

and Moore27. They found that a two-dimensional circular patch of uniform vorticity and

entropy was unstable to two-dimensional wavy deformations of the boundary, the elliptic

mode being the most unstable. The instability is weak; it takes many core rotations for

the initial disturbance to undergo an e-fold amplification especially at low Mach numbers

based on maximum rotational velocity in the core. Sturtevant mentions that the maximum

velocity in the core is near sonic; this allows us to find the growth rate of the elliptic mode

from Table 1 of ref. 27. Then, using Kelvin’s speed formula with a core size to radius ratio

of 0.10 estimated by Sturtevant we find that in the time that the vortex propagates one

ring diameter there are 0.90 e-foldings of the initial disturbance. On the other hand, using

Equation 9.2 of ref. 28, the three-dimensional instability undergoes 1.4 e-foldings but as

mentioned earlier its influence decays more rapidly from the core and it does not rotate.

Thus one cannot a priori discount the presence and influence of the Broadbent and Moore

instability.

Maxworthy (ref. 29, hereafter M) studied turbulent vortex rings in water with Re ≈

1× 104 based on propagation velocity and toroidal radius. Figure M:3 shows a ring marked
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with a blob of dye. The blob becomes puffy and its boundary corrugated with ejections

similar to those suggested by the unstable manifold. Most of the dye is rejected to a wake

and eventually remains only in a thin toriodal core.

In Figure M:4 an undyed ring is pushed through a patch of dye. “The outer region of

the moving bubble was immediately filled with dyed fluid, but the core remained clear. As

time progressed, a thin skin around the core became dyed but penetration to the centre of

the core never seemed to take place, at least during our experiments.” The remarks suggest

that there is little exchange between the vortical core and surrounding fluid.

In Figure M:5 a weak salt solution was used to mark the bubble and observed using

the shadowgraph technique. “The major motions in the outer bubble are of larger scale;

they mix environmental with bubble fluid and deposit the majority into a wake. There are,

clearly, small scale streaks in the region, but are being convected around and stretched by

the large scales, and only show up because of the small diffusion coefficient possessed by the

denser salty water.”

These observations are also consistent with unsteady motion of a vortical core inducing

the entrainment and detrainment.

Unlike the situation we have treated, in the experiments of Maxworthy the vortical core

is not completely isolated from the surrounding fluid. We have not addressed slow permanent

entrainment characterized by growth of the bubble. The rate of growth of bubble volume

divided by the surface area times the propagation velocity defines an entrainment coefficient.

Maxworthy reports a value of about 0.01 independent of Re. Weak vorticity either diffusing

into the bubble or entering it via wisps torn off from the core would become turbulent due to

chaotic passive advection. This vorticity is continually being rejected into the wake, resulting

in a slow loss of impulse.
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FIG. 8: Poincaré section of regions of fluid permanently carried by an elliptical core ring. λ = 2,

α ≡ (a + b)/(2L0) = 0.15.

B. Fluid carried permanently with the ring

Despite the fluid exchange process, some fluid is permanently carried with the vortex.

Figure 8 shows that two such regions exist near the core. After half a major axis rotation

region ‘A’ is transported to ‘B’ and vice-versa. The motion is quasiperiodic and periodic

for some exceptional points inside. In a cylindrical coordinate phase space in which the

azimuthal direction is chosen to be angle of the ellipse, the motion of particles takes place
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FIG. 9: Poincaré section of particle paths for Kirchhoff’s two-dimensional elliptic vortex in a

reference frame rotating with the vortex. (a) λ = 1.1; (b) λ = 2.

on tori whose cross-section has been depicted in the figure. These are called KAM tori after

the Kolmogorov-Arnold-Moser theorem for perturbed Hamiltonian systems20. In the fluid

mechanical context the KAM theorem refers to the survival, under small perturbations about

steady flow, of such regions near the closed streamlines of the steady flow.

The existence of these regions of trapped fluid near the vortex core can be understood

in terms of the streamline pattern of the steadily rotating Kirchhoff elliptic vortex in two-

dimensions. This is because the velocity field in the vicinity of the core is locally the same

with additional terms in the axisymmetric case that account for self-induction. From the

KAM theorem one expects that some of the qualitative features will remain unchanged in the

presence of these additional terms. Figure 9a shows the Poincaré section, every half rotation,

of particle paths relative to the vortex for a slightly elliptical vortex. We used the velocity

field of the Kirchhoff elliptic vortex as written down by Saffman30 using complex variables.

If the vortex were circular, particle paths would also be circular but the slight ellipticity

creates mounds of fluid on the major axis side that rotate with the vortex. Similar mounds

exist for the potential flow of a solid rotating ellipse31. The mound is created about the point
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FIG. 10: Unstable manifold at different phases for two leapfrogging rings. Photographs are from

Yamada and Matsui18.

in the circular flow where the particle rotation frequency is the same as the vortex rotation

frequency. Figure 9b shows larger mounds for aspect ratio equal to two. These mounds erode

in the presence of waves Love32 waves on the boundary of the elliptic vortex17.
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C. Leapfrogging rings

Finally, the leapfrogging of two vortex rings is considered. For the vorticity dynamics,

the simple model due to Dyson33 is used. In this model, core deformation is neglected and

the self-induced velocity of each ring is given by Kelvin’s formula (Lamb16, §163) while the

mutually induced velocity is obtained by assuming zero thickness cores. This is a valid

assumption when the vortex rings cores are separated by a distance larger than their core

radii. Classical works provide only the streamfunction for a zero thickness ring, however,

the induced velocity can be easily obtained in closed form (see ref. 17, p. 87) by using the

Biot-Savart law.

The case considered has a core size to radius ratio of 0.1 and an initial separation of one

radius. Axisymmetric contour dynamics, which allows core deformation, shows that Dyson’s

model gives an excellent result for this case17. Figure 10 shows the unstable manifolds of

the Poincaré map with period equal to one passage at three phases; the circles indicate

the vortical core. The flow visualization photographs are from Yamada and Matsui18. The

stretching along the manifold is so rapid that even though 4000 particles were placed on the

initial segment, the visual appearance of the manifold as a connected curve disappears after

the third forward map of the initial segment. For the middle photograph, the manifold winds

back and forth between the two vortices each time passing through the “braid” region.

Even the very fine scale features of the manifold agree remarkably well with the exper-

imental photographs. Maxworthy34 used the photographs together with vorticity diffusion

arguments to provide a plausible rendering of the underlying vorticity. The first photograph

shows the first passage almost completed, and according to him “thereafter, the latter [the

passing vortex] is distorted and wraps around the former and the two rings become one.”

In referring to the third photograph, Maxworthy says that the passing vortex “has become
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so distorted that it is barely recognizable”, and Yamada & Matsui say that “the core of the

first ring was severely deformed and stretched, and it seemed to roll up around that of the

second ring...” Maxworthy’s guess of the vorticity field underlying the third photograph is

sketched as Stage 3 in Figure 1 of his paper and shows the two rings diffused together.

On the other hand, the present result suggests that the observed pattern may be due

merely to complex motion of tracer in irrotational or weakly vortical fluid, with vortex cores

behaving in a simple, non-deforming and almost classical manner. It is only tracer that

appears to deform and roll-up around the leading vortex.

This suggestion should be tempered with three points. First, our type of interpretation

is appropriate only for this experiment in which a smoke wire was stretched across the

entire diameter of the orifice, causing smoke to be introduced not only in the emitted shear

layer (which would mark the vorticity aside from Schmidt number effects) but also into

non-vortical fluid initially transported with each vortex. If one is careful to ensure that

only vortical regions are marked then there is less danger in identifying smoke with vorticity.

Second, weak vorticity around the periphery of a core may also become susceptible to passive

advection and acquire the structure of the unstable manifold. Third, the question of whether

at the Reynolds number of the experiment (1600 based on initial translation speed and orifice

diameter) the two rings diffuse together or behave in the simple manner suggested at the

Reynolds number of the experiment will have to await viscous numerical computations at

higher Reynolds number. Stanaway et al.35 simulated a passage interaction for the same core

size (based on where the maximum velocity occurs) and vortex separation as the present

case. The Reynolds number based on initial self-induced speed and diameter was 609. They

observed that the first passage is successful but, during the second, the passing vortex

strongly deforms. A measure of the extent of viscous merging is the level of the highest

vorticity contour that surrounds the vorticity peaks of both rings. At roughly the phase
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of the last Yamada & Matsui photograph and stage 3 as sketched in Maxworthy (1979,

Figure 1), this level is 10% of the peak vorticity. Hence, at the Reynolds number of the

simulation, neither Maxworthy’s nor the classical picture is completely accurate. We hope

that simulations at higher Reynolds number will lead to a synthesis of inviscid descriptions

and Maxworthy’s views about the role of viscous diffusion.

IV. CONCLUSION

Several features present in observations of turbulent vortex rings, such as puffiness and

striations in the tracer, a trailing wake, and the entrainment of fluid from a patch of dye

placed in the path of an initially unmarked vortex ring, are revealed by the unstable man-

ifold of an axisymmetric vortex ring with an elliptic core. This suggests that irrotational

motions induced by simple forms of core unsteadiness may explain those features for turbu-

lent rings. Qualitative agreement with experiment does not necessarily mean that a sufficient

explanation has been offered. The boundary of the core may have an arbitrary number of

axisymmetric waves and there may be azimuthal waves. Sallet and Widmayer36 have in-

deed measured irregular hot-wire signals for turbulent rings. We only wish to suggest that

relatively simple unsteady models may be fruitful in elucidating large scale aspects of the

mixing.

For two leapfrogging rings it is found that the unstable manifold reveals even fine scale

patterns in the smoke suggests that blobs of fluid near the unstable manifold are drawn out

along it and acquire its structure. The unstable manifold may therefore be useful as a tool

for numerical flow visualization. The conventional approach to numerical flow visualization

is to follow the trajectories of arbitrary clusters of particles. This has the disadvantage that

it is expensive to place particles with sufficient resolution wherever dye is located initially.

One usually starts with a judiciously selected blob but this does not yield a global picture.
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The unstable manifold is a curve (or surface for 3D flow): it is therefore easiler to resolve

and provides a more global picture. This conclusion is reinforced by the existence of analogs

of the manifolds for general unsteady flows. These analogs are applied to vortex ring flows

in the companion paper by Shadden, Dabiri and Marsden8.
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Figure Captions

Figure 1. Sketch of streamlines for steadily translating vortex rings. The hatched region

shows the vorticity containing region.

Figure 2. Unstable manifold of the forward periodic point for an elliptical core ring.

λ = 2, α ≡ (a+ b)/(2L0) = 0.15.

Figure 3. Abridged portions of the stable and unstable manifolds corresponding to the

previous figure illustrating fluid engulfment and rejection.

Figure 4. Volume of fluid exchanged by elliptical core vortex rings per diameter transla-

tion as a function of the ellipticity. •, α ≡ (a+ b)/(2L0) = 0.15; �, α = 0.125.

Figure 5. Motion of subsets of the entrance lobe.

Figure 6. Sketch of six Poincaré maps of a “rectangle” (screen dotted) leading to a the

horseshoe map. The iterates are hatched and proceed counterclockwise. (a) shows the first

five iterations and (b) the last.

Figure 7. Schlieren visualization of a shock-tube generated ring propagating to the left.

Courtesy of B. Sturtevant.

Figure 8. Poincaré section of regions of fluid permanently carried by an elliptical core

ring. λ = 2, α ≡ (a + b)/(2L0) = 0.15.

Figure 9. Poincaré section of particle paths for Kirchhoff’s two-dimensional elliptic vortex

in a reference frame rotating with the vortex. (a) λ = 1.1; (b) λ = 2.

Figure 10. Unstable manifold at different phases for two leapfrogging rings. Photographs

are from Yamada and Matsui18. Reproduced with permission. Please turn page sideways.


